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Abstract:

There has been much renewed interest in plasma wakefield acceleration. This is due in part to

the possibility of using it as an energy doubler, i.e., an “afterburner”, stage at the end of an existing

linear collider such as SLC[1]. The generation of plasma wave wakes due to intense particle beams is

highly nonlinear and therefore particle models are required to study it. Unfortunately, even on the

largest supercomputers, it is still not practical to use standard particle-in-cell (PIC) codes such as

OSIRIS[2] to model an entire 100 GeV energy doubler stage. Luckily, there is a disparate difference in

time scales between how the drive beam evolves and the period of the wakefield oscillation. We have

recently developed a three-dimensional, parallelized PIC code called QuickPIC which makes a frozen

field approximation. This code embeds a two-dimensional electrostatic parallel PIC code inside of a

three-dimensional electrostatic parallel PIC code. In this paper, we will review how a standard

electromagnetic PIC code such as OSIRIS works, describe the frozen field approximation and then

describe how QuickPIC works. Preliminary results will be presented, which include benchmarking

QuickPIC results against OSIRIS results.

I. INTRODUCTION

The challenge of modeling any plasma physics problem is to self-consistently evolve the

electromagnetic fields through Maxwell’s equations and the trajectories and currents (and charge

densities) of the particles through the relativistic equations of motion.  The technique which uses the

least physics approximations is the fully explicit particle-in-cell (PIC) technique in which the full set

of Maxwell’s equations is solved together with the individual trajectories of each plasma particle.

While PIC codes make the fewest approximations of any plasma model, they are also the most



computationally demanding. Therefore, to use such codes on even some simple problems requires that

they be implemented using parallelized algorithms. At UCLA we have been developing parallel PIC

algorithms since 1987 and we currently have a variety of fully parallelized PIC codes. In some of these

codes Maxwell’s equations are solved in Fourier space while in others they are solved in real space

using finite difference equations.  These also include electrostatic and fully electromagnetic codes.

One of our electromagnetic codes called OSIRIS has been used extensively to model advanced

accelerator concepts[3,4,5,6,7,8,9].

To model the excitation of plasma wave wakes due to an intense particle beam traversing a

plasma requires the use of PIC codes since particles trajectories are nonlinear and cross through each

other. The acceleration gradient in these wakes may approach 100 GeV/m. It turns out that to model a

beam propagating through a few meters of 1016cm-3 plasma, i.e., a 100 GeV stage, using our standard

code OSIRIS will take ~100,000 hours of CPU time. Therefore, from a practical standpoint we need to

develop a different type of code to model this problem.

Fortunately, the beam evolves slowly while it moves through the meter of plasma. We can

therefore develop an approximate code which exploits this, while still keeping a high degree of

accuracy. We have started this development by using pieces of existing parallel PIC codes which exist

at UCLA. This was possible due to a new frameworks strategy for parallel algorithms which we are

developing.

In this paper, we will first describe the equations to be solved and the frozen field

approximation. We will then briefly describe the frameworks concept and how it was used to construct

QuickPIC. Last we will give some preliminary results and some comparisons between OSIRIS and

QuickPIC.

II. QUASI-STATIC APPROXIMATION

QuickPIC is based on the quasi-static approximation. We start from the Maxwell equations in

Lorenz gauge,
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In (x, y, s , ) coordinates, where s = z ( z  is the direction in which the beam is

moving), = t − z c , quasi-static approximation can be taken, i.e., ∂ s ≈ 0 . Then a set of full quasi-

static equations can be written as,
∇⊥

2 = −4 , ( 3 )
∇⊥

2A ⊥ = − 4 j⊥ c, ( 4 )



∇⋅ A⊥ = −
Ψ

, ( 5 )

with the equations of motion being:
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In Eq. (5) and (6), Ψ = − A// , where A//  is the longitudinal component of vector potential. q

is the charge of particle and  is the charge density. V, P are velocity and momentum and the

subscript b, e denote beam electron and plasma electron respectively.

Notice that the longitudinal beam current dominates the transverse currents of the beam and the

plasma. To the lowest order, one can neglect the transverse current j⊥ , and hence the transverse

component of the vector potential A⊥ .  The longitudinal current by the plasma can also be neglected to

the lowest order. The above quasi-static equations can be reduced to:

∇⊥
2 = −4 = −4 ( b + e + ion ), ( 8 )
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The equations above only involve two dimensions, which are perpendicular to the beam

propagation direction, so Eqs. (8) and (9) can be solved in 2D space. Once the potentials are

calculated, the velocity and position of particles can be updated using Eqs. (10) and (11). For plasma

electrons, this is done for every time step ∆ , which needs to resolve the plasma frequency. While for

beam electrons, the time step is ∆s, which only needs to resolve the betatron frequency or the hosing

growth.

The above lowest order algorithm is identical to that of D. H. Whittum [10] and is adopted in

the first phase of QuickPIC development. Eqs. (8) and (9) are solved in Fourier space by a parallel

Poisson solver, either with periodic or conducting boundary conditions. We have also added three

major corrections. These corrections include: (a) a relativistic plasma electron pusher; (b) a correction

to the plasma charge density due to the longitudinal motion of plasma electrons by using the following

deposition scheme:
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and (c) an addition of the parallel current of plasma,
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These three corrections can be explicitly turned on or off from the input.



Currently, QuickPIC can achieve results reasonably similar to those from more computational

intensive full electromagnetic code such as OSIRIS for medium beam/plasma density ratio. We find

that in this parameter regime QuickPIC gives results that are within 10s of percent of those from

OSIRIS but at a saving of 1000 times in computing time. As the beam density goes higher, transverse

current starts to play an important role, and accuracy of the reduced quasi-static description

deteriorates.

The second phase development of QuickPIC is still ongoing, and the goal is to implement the

full quasi-static equations as described in Eqs. (3)-(7) as well as the ability to model laser drivers

instead of particle beam drivers. An efficient algorithm for properly time-centering the full quasi-static

equations may be essential to the development. Also, a new framework for object-oriented

programming is being introduced at this phase, which we will describe in the next section.

III. FRAMEWORKS
Frameworks are an emerging technology for code reuse in development of complex software

systems [11,12]. They are generally based on an object-oriented design, with interacting classes that

can be specialized to produce custom applications. They have been largely used in developing

business software, with only a few examples in scientific computing [13]. While frameworks are

commonly implemented in an object-oriented language, this is not a requirement.

Although there are many definitions of a framework, the working definition we have adopted is

that a framework is a unified environment containing all the components needed for writing code for a

specific problem domain. Its goal is the rapid construction of new codes by reusing trusted modules.

Although our framework can be used to write a large “mega-code,” it is designed to provide “Lego”

pieces for rapid construction of new codes. Our framework will support multiple numerical methods,

different physics approximations, different numerical optimizations and implementations for different

hardware.  Above all, it is designed to hide the complexity of parallel processing.

Our approach is to write powerful high level classes that can easily be reused for those parts of

the code which new programmers such as graduate students do not intend to modify. These high level

classes provide simple interfaces that encapsulate the implementation details of a large block of code.

Invariably, students need to modify some high level class for their research needs. To simplify this

process, we find that it is useful to build high-level classes from middle-layer helper classes. These

helper classes contain descriptors of data, but not the data themselves.

We have begun implementation of such a framework for parallel plasma Particle-in-Cell (PIC)

simulations. The current framework is designed to support two and three dimensional parallel codes.

It uses trusted legacy Fortran77 subroutines as the lowest layer. These legacy subroutines are well

debugged and provide most of the basic functionality, but are not intended to be modified greatly. The

most CPU time-consuming parts of a PIC code are the particle push and charge deposit. These

subroutines have been very carefully written to provide the highest performance possible[14]. Figure 1



illustrates the kind of domain decomposition supported by the framework to give optimum load

balancing on parallel processors.

For the first phase of our code development, we used existing 2D code and embedded it into a

3D one. The 2D Fortran 90 routine calls the wrappers, which actually pass parameters to legacy

Fortran 77 subroutines, to solve Eqs. (8) and (9) and push the plasma electrons. The calculated forces

are returned to the 3D main program where the beam electrons are updated. In the next phase, these

legacy Fortran 77 subroutines will be encapsulated into classes which will make the design of 2D and

3D routines more simplified.

Figure 1: Diagram shows how space can be partitioned among different processors in a parallel PIC code.

III. PRELIMINARY RESULTS

We have use QuickPIC to conduct some benchmarking runs based on E157 / afterburner beam

and plasma parameters. For the simulations of E157 experiment, plasma density was 2.1×1014 cm-3.

The beam charge was 1.8×1010 electrons and the charge density had a Gaussian distribution with

σr=0.07mm and σξ=0.63mm. The energy of beam was 30Gev (γ=60,000). The dimensions of the

simulations were 8×8×17.6 c/ωp (2.9×2.9×6.4mm), divided into 256×256×256 cells. 128×128×320

particles were used for the beam and 512×512 particles for the plasma. For the afterburner runs,

plasma density was 2.1×1016 cm-3, spot size σr=0.007mm and σξ=0.045mm (the beam density

normalized to the plasma density is about ten times higher.) The dimensions were 16×16×16 c/ωp

(0.59×0.59×0.59mm), with 256×256×256 cells. Other parameters were the same as E157 simulations.

Figure 2 shows comparison of the accelerating fields from QuickPIC and OSIRIS for the E157

benchmarking run and Figure 3 shows the same comparison for Afterburner benchmarking run.



QuickPIC has been used to study the electron hosing instability. Figure 4 shows the growth of

centroid oscillation from a QuickPIC Afterburner run.

IV CONCLUSION

The algorithm and structure of a new parallelized quasi-static code called QuickPIC was

described. We have presented the preliminary results from benchmarking and hosing runs. The full set

of quasi-static equations and new framework will be integrated into QuickPIC and we hope it will then

reproduce the results of fully electromagnetic code.

This work was supported by DOE under contract number DE-FC02-01ER41179 and by NSF

grants Phy-0078508 and ECS-9617089, and by LLNL under grant # W-07405-ENG48.
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Figure 2: Longitudinal accelerating field (E157 parameters) from QuickPIC(dot-dash, conducting boundary condition;

dash, periodic boundary condition) and OSIRIS (solid)

Figure 3: Longitudinal accelerating field (Afterburner parameters) from QuickPIC(solid and dash, ploting accelerating field

at different time steps) and OSIRIS (dot-dash), the Y axis is accelerating field in Gev/m.
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Figure 4: beam centroid oscillation (Afterburner parameters)
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